Correction to fractional integration and certain dual integral equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate solution of dual integral equations

‎We study dual integral equations which appear in formulation of the‎ ‎potential distribution of an electrified plate with mixed boundary‎ ‎conditions‎. ‎These equations will be converted to a system of‎ ‎singular integral equations with Cauchy type kernels‎. ‎Using‎ ‎Chebyshev polynomials‎, ‎we propose a method to approximate the‎ ‎solution of Cauchy type singular integral equation which will ...

متن کامل

Dual Integral Equations—revisited

Dual integral equations with trigonometric kernel are reinvestigated here for a solution. The behaviour of one of the integrals at the end points of the interval complementary to the one in which it is defined plays the key role in determining the solution of the dual integral equations. The solution of the dual integral equations is then applied to find an exact solution of the water wave scat...

متن کامل

Fractional Integral Equations and State Space Transforms

We introduce a class of stochastic differential equations driven by fractional Brownian motion (FBM), which allow for a constructive method in order to obtain stationary solutions. This leads to a substantial extention of fractional Ornstein-Uhlenbeck processes. Structural properties of this class of new models are investigated. Their stationary densities are given explicitly. Short title: Frac...

متن کامل

Ulam-Hyers-Rassias stability for fuzzy fractional integral equations

In this paper, we study the fuzzy Ulam-Hyers-Rassias stability for two kinds of fuzzy fractional integral equations by employing the fixed point technique.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 1968

ISSN: 0025-5874,1432-1823

DOI: 10.1007/bf01111052